skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yu, Xiaojuan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Reaction of Tl(OTf) with 2 equiv of bis(diisopropylamino)cyclopropenylidene (BAC) in THF results in formation of [Tl(BAC)2(OTf)] (1) in moderate yields. Subsequent reaction of1with [K][H2‐9‐BBN] ([H2‐9‐BBN] = dihydrido 9‐boratabicyclo[3.3.1]nonane) in THF results in formation of [Tl(BAC)(μ‐H2‐9‐BBN)]2(3), also in moderate yield. Complex3is the first reported thallium borohydride. We attribute its thermal stability to the strong donor ability of the BAC co‐ligand. Both1and3exhibit trigonal pyramidal geometries about Tl+in the solid‐state, indicative of the presence of stereochemically active lone pairs. The hydride environment in3is calculated to exhibit a 3.9 ppm downfield shift attributed to spin‐orbit effects from the adjacent Tl center. 
    more » « less
    Free, publicly-accessible full text available July 24, 2026
  2. Organometallic cerium(iv) and thorium(iv) alkynyl complexes were synthesized, and compared experimentally and theoretically. A cerium(iv)trans-influence ligand series was observed and analyzed. 
    more » « less
    Free, publicly-accessible full text available August 5, 2026
  3. Free, publicly-accessible full text available June 1, 2026
  4. Abstract Reaction of [CuH(PPh3)]6with 1 equiv. of Tl(OTf) results in formation of [Cu6TlH6(PPh3)6][OTf] ([1]OTf]), which can be isolated in good yields. Variable‐temperature1H NMR spectroscopy, in combination with density functional theory (DFT) calculations, confirms the presence of a rare Tl−H orbital interaction. According to DFT, the1H chemical shift of the Tl‐adjacent hydride ligands of[1]+includes 7.7 ppm of deshielding due to spin‐orbit effects from the heavy Tl atom. This study provides valuable new insights into a rare class of metal hydrides, given that[1][OTf]is only the third isolable species reported to contain a Tl−H interaction. 
    more » « less